Why won’t my TCP based server start

Picture this, you have a server that has suddenly started to act strangely, perhaps it has stopped responding to requests or perhaps it’s writing the same message in the log file over and over. You stop the server process and start it back up again. However, instead of the expected “TCP server version 12a ready at 00-08-27 15:31” you get “error 4932”. You go get the developer to show him and this time it starts up just fine!

Or this, you are testing a new server, you give it some data and it crashes, you start it back up and now it crashes immediately but this time with the error “cannot create socket - code 4932”. After looking through the code trying to figure what is happening you give up and try starting it again and this time it starts up just fine!

The error code in both these scenarios is 4932 or e$tcp_address_in_use. If you were running STCP instead of OS_TCP it would have been 6066, e$streams_EADDRINUSE. An HP-UX 11x system would return 226, EADDRINUSE. Regardless of what the text of the message in the second scenario implies these errors are returned from the bind call after the socket is already created. The bind call “binds” or associates a socket with an IP address and port number.

But if the old process that was running the server application is no longer running why is the socket still “in use” and why does it magically stop being in use after what appears to be a random interval?

When a TCP process shuts down a connection or when a process terminates and the connection is shut down by the operating system the TCP connection state moves from ESTABLISHED, thru FIN_WAIT_1 and FIN_WAIT_2 to TIME_WAIT. It is important to realize that only the socket that initiates the shutdown moves through these states. The other side of the connection has a completely different set of states that do not include the TIME_WAIT state. The TIME_WAIT state serves as a buffer that can prevent some strange things from happening.

For example, Assume a connection between two hosts, for whatever reason the client binds to the same port number all the time, say 10123. It may need to do this to get through a firewall or as an ID to the server, whatever. Now the server application starts an orderly shutdown by calling the shutdown routine. The server’s TCP stack (from now on I’ll just refer to the server) sends a FIN packet (a packet with the FIN (finish) flag set), the client’s TCP stack (the client) gets the FIN, sends back an ACK (a packet with the ACK (acknowledgement) flag set) and notifies the client application. When the client application shuts down its socket the client sends out its own FIN. The server gets the FIN and sends back an ACK. At this point the server is done, it has completed the 3 steps in an orderly shutdown (send FIN, receive FIN, send ACK). However, if that final ACK, the one that the server sent in response to the client’s FIN is lost the client will resend the FIN. If the server just closed the socket, then when it gets the retransmitted FIN from the client it will not recognize it and send a RST (a packet with the RST (reset) flag set). The client gets the RST and must assume that there was a problem with the shutdown and possibly some of the data sent to the server did not get thru. If the server keeps the socket in a TIME_WAIT state then if it gets another FIN it can respond with another ACK.

For another example of the usefulness of the TIME_WAIT state assume that there is a connection going over a very large and complex internet. Packets tend to travel over several different routes based on the current level of congestion of the various routers. One of those routes is SLOW. Again, the server shuts down the connection but now the client immediately opens up a new connection. As in the previous example the client binds to a specific port number. We will also assume the sequence numbers used in the second connection overlap the sequence numbers used in the first connection. This can happen if the algorithm to select the initial sequence number is not the best or if the previous connection was very long running with lots of transmitted data. Without the TIME_WAIT state it’s possible that a packet from the previous connection traveling over the SLOW route can arrive after the new connection is established and corrupt the data stream of the new connection.

You say that neither of my examples is very likely and that’s true but with millions of connections made and shutdown every day, unlikely events happen with frighteningly regularity. So, to prevent failures of orderly shutdowns and to prevent possible data corruption the TIME_WAIT state is very import. RFC 1337 “TIME-WAIT Assassination Hazards in TCP” has a more complete description of the problems that can happen if a socket does not remain in the TIME_WAIT state for an adequate amount of time.

OK, so now you know why the TIME_WAIT state is important but that doesn’t explain why it’s sometimes there and sometimes not and more important is there any way to restart the server without this TIME_WAIT state getting in the way.

First, the TIME_WAIT state is always there – at least to start with. RFC 793 “Transmission Control Protocol” states that the socket should remain in the TIME_WAIT state for 2MSL or 2 times the maximum segment lifetime. The MSL is the maximum amount of time that a TCP segment or packet can remain in the network and RFC 793 defines it as 2 minutes. So according to the RFC a socket should remain in the TIME_WAIT state for 4 minutes. This is a very long time and many TCP stacks including OS_TCP use a value of 30 seconds for MSL. STCP sets MSL to 1 second for a total delay of 2 seconds – provided that linger is not set. If a linger timer has been configured on the socket then the linger time is used for the TIME_WAIT timeout. After all of the above about the importance of the TIME_WAIT state why does STCP use only 2 seconds? I don’t know, the bug stcp-1407 has been entered to document the issue with a recommendation that the time be increased to 30 seconds. HP-UX 11 sets the TIME_WAIT time based on the value of the kernel variable tcp_time_wait_interval. Using ndd you can change the default value of 60 seconds - but I don’t recommend it. The timeouts for OS_TCP and STCP are fixed and cannot be changed without rebuilding the TCP driver.

Unfortunately, RFC 793 also states that anytime a packet is received on the socket the TIME_WAIT timer is reset. So, assuming that something happened to the network and the server’s ACKs are not getting to the client the client will continue to resend FINs. Depending on the timeout algorithm the client uses it could resend FINs for 7 or 8 minutes and if the timing is right each FIN could reset the timer for a total TIME_WAIT time of about 8 or 9 minutes. If the client never times out (I’ve seen this several times) the sockets will remain in TIME_WAIT forever.

OK so you have a socket in TIME_WAIT state, it may be there for at least a few seconds or a minute but it could be there a lot longer, either way you don’t want to wait and in a production environment you can’t wait for the TIME_WAIT timer to complete and the socket to really go away. Well, the good news is that it’s easy to get around this problem. The bad news is that it requires that the application be changed.

In the application, after the socket is created but before it is bound you need to add a call to setsockopt to set the SO_REUSEADDR socket option. This option tells the TCP stack that it’s OK to bind a socket to a port that is already bound to another socket.

int reuse = 1;

if (setsockopt

 (s, SOL_SOCKET, SO_REUSEADDR, (char *)reuse, sizeof (reuse)) < 0)

 {

 printf (“Unable to set SO_REUSEADDR on socket, errno = %d", errno);

 exit (errno);

 }

That’s it, now you can execute the bind call and continue without an error. The sockets in TIME_WAIT will eventually time out and go away but until then they will not cause any problems for the application.

