TCP keep-alive - NOT!

The TCP keep-alive function should really be named the TCP connection reaper. Its function is to kill connections that are no longer viable, not to keep them alive. It does this by periodically sending a probe to the remote peer of the connection. The period is based on a timer that is reset every time a packet is received from the connection's remote peer. When the timer expires an initial probe is sent. If a response to the probe comes back then the timer is again reset. If no response is received within a, typically, short time another probe is sent. If after some number of probes there has still been no response the connection is killed. The keep-alive function is discussed in RFC-1122 Requirements for Internet Hosts - Communication Layers.

By default this feature is turned off and must be explicitly turned on for each socket by the application that creates the socket. This is done in almost all operating systems and TCP/IP stacks (OS_TCP, and STCP are no exceptions) with the setsockopt call. The following example can be used to turn keep-alive on in both OS_TCP and STCP.

on = 1;

error_code = setsockopt(sd, SOL_SOCKET, SO_KEEPALIVE, &on, sizeof on);

if (error_code == -1)

 {

 printf ("Error in setsockopt. Errno is %d\n",errno);

 exit(1);

 }

So why if it requires extra effort by the application programmer and will consume some network bandwidth would you want to turn this function on? Because, it may be the only way that you can recover system resources in the event of network or client problems. For example, you have a server handling queries from several thousand clients from all over the country. The branch in San Diego looses power and all 500 client workstations crash. Since they did not disconnect cleanly the server still shows that they have established connections. These connections will never be used again but the server doesn't know that. How can the sockets and other resources used by these connections be recovered? Well you could shut down the server application. This however would disconnect all the other users. The application programmers could create some kind of application level probing to disconnect clients that are no longer reachable, or you could let TCP do the job automagically via the keep-alive function.

I've already described what to do in your application to turn keep alive on but what about the telnet and ftp servers provided as part of OS_TCP? Well you can start os_telnet with the -keep_alive argument. It is off by default but I strongly recommend turning it on. Unfortunately the telnet_msd server does not have an option for turning keep-alive on. The ftpd server also does not have a keep-alive option. In ftpd's case it's not that serious since there is only 1 ftpd process per client, so once you have determine that the client is no longer viable you can just stop the ftpd process for that client without effecting any other users.

What about applications that you have purchased? Well there is no way to force an application to turn keep-alive on (other than refusing to buy it) but you can confirm that the keep-alive option has been (or hasn't been) set.

Start the application, identify the port that it is using and dump its TCP socket. The "keepalive" flag should be set as a socket option. In the following example the port number is 12345. Note that the -port argument was added as an argument to dump_tcp_socket in VOS 14.1.0 and 13.5. You can ignore the warning about chaining. If sockets are being created or closed very quickly there is some probability that the socket chain will be changing at the precise instant that dump_tcp_socket is trying to read it. This may cause the request or even analyze_system to abort but will not effect the system and you can just try the command again.

as: dump_tcp_socket -port 12345

dump_tcp_socket: chaining may cause unreliable results on a live module.

 *** Socket at 0xC14AD640 ***

 in use user_active protocol_active

 socket type 1 (Stream)

 socket options keepalive <<<<<<<<<<<<<<<<<<<<<<<<

 event ID 0xC2C7B640

 lock info ptr 0xC14AD780

 available for xfer flag cleared

 protocol control block 0xC0D94820

 socket address family 2 (Inet)

 so_mbz1 73

 state flags isconnected priv

 control flags cached

 read mbufs 0x00000000

 rcvfrom names 0x00000000

 linger time 0

 number of accepted conn's 0

 maximum accepted conn's 0

 parent socket (via accept) 0x00000000

 protocol handle 0xC14A1EBC

 next socket 0xC14AC8C0

 previous socket 0x00000000

 so_portep 0x00000000

as:

Is there anyway to tell if an OS_TCP socket is currently being keep-alive probed? No. But system wide statistics are kept. The netstat command with the -statistics argument will give you the count of keep-alive timeouts, actual probes sent and number of connections closed because the probes were never answered. How can there be more timeouts then probes? Every socket sets the keep-alive timer. When the timer expires the counter goes up but if the keep-alive option is not set then the timer is just reset. If the keep-alive option is set then probing starts. So unless every socket has keep-alive turned on you can expect more timeouts then probes.

netstat -s

. . .

 538 keepalive timeouts

 160 keepalive probes sent

 2 connections dropped by keepalive

. . .

What are the actually times that OS_TCP uses? There are two variables that control the keep-alive timing. These variables can be adjusted via the set_longword request of analyze_system but remember that changing them effects all sockets that have keep-alive turned on, so careful tuning based on all your applications needs to be done before changing these variables.

The first variable is tcpos_keepidle$. This is the interval between the last packet received on a connection and the initial keep-alive probe. By default it is set to 14400 (3840x) half seconds. This works out to 2 hours. Why the unit is in half seconds is a good question. I do not have a good answer.

The second variable is tcpos_keepintvl$. This is the time (in half seconds again) to wait for a response from the previous keep-alive probe. If a response is not returned at the end of this time another probe is sent. The default time is 150 (96x) half seconds.

There is a third variable named tcpos_maxidle$. This variable is the total time for keep-alive probing, starting from the first retransmitted probe. If an answer to the probe is not received within this time the connection will be reset. This value is set to tcpos_keepintvl$ * 8. You can use analyze_system to change this value but it will be set back to tcpos_keepintvl$ * 8 within a few seconds. So no matter what you do there will be 9 probes, the initial probe and 8 retransmitted probes.

The following is an example of how to display the values and then how to change them. Note that tcpos_maxidle$ changed automagically after I changed tcpos_keepidle$ and tcpos_keepintvl$.

as: d tcpos_keepidle$

FEDB49B8 0 00003840 |..8@ |

as: d tcpos_keepintvl$

FEDB49B4 0 00000096 |.... |

as: d tcpos_maxidle$

FEDB49B0 0 000004B0 |.... |

as: set_longword tcpos_keepidle$ 4b0

addr from to

FEDB49B8 00003840 000004B0

as: set_longword tcpos_keepintvl$ 20

addr from to

FEDB49B4 00000096 00000020

as: d tcpos_maxidle$

FEDB49B0 0 00000100 |.... |

as:

Finally here is some highly edited output from packet_monitor showing a complete packet sequence from initial connection setup (first 3 packets) followed by some transmitted data (12 bytes) and ACKs (next 4 packets) and a series of 4 successful probes (next 8 packets) and then a failed probe (9 packets) and the final connection reset. Note that at the time of this trace tcpos_keepidle$ was 10 minutes and tcpos_keepintvl$ was 16 seconds.

Notice that the sequence number of the probes matches the last byte of transmitted data. You can tell because the sequence number of the first byte of transmitted data is 8d3361a4 and I told you that there was 12 bytes of data total (8d3361a4 + c -1 = 8d3361af), the full trace would show this. Even if I didn't tell you how much data was transmitted you can tell from the ACK in packet 7 that the next byte expected is 8d3361b0 so 8d3361af matches the last byte transmitted.

 time source destination seq ack flags

8:44:17.740 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361a3 n.a. S

8:44:17.743 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e401 8d3361a4 SA

8:44:17.743 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361a4 5e15e402 A

8:44:17.744 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361a4 5e15e402 PA

8:44:17.946 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361a8 A

8:44:17.946 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361a8 5e15e402 PA

8:44:18.149 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361b0 A

8:54:15.829 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

8:54:15.831 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361b0 A

9:04:13.562 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:04:13.565 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361b0 A

9:14:11.329 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A 9:14:11.332 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361b0 A

9:24:09.121 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:24:09.123 Rcvd 198.115.44.11.12345 198.115.44.206.4269 5e15e402 8d3361b0 A

9:34:06.859 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:34:22.799 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:34:38.739 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:34:54.679 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:35:10.618 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:35:26.559 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:35:42.498 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:35:58.439 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:36:14.378 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361af 5e15e402 A

9:36:30.319 Xmit 198.115.44.206.4269 198.115.44.11.12345 8d3361b0 5e15e402 RA

This is a full example of the probe packet. Notice that it is 0 length, i.e. no data.

9:24:09.121 Xmit IP Ver/HL 45, ToS 0, Len 28, ID b0ab, Flg/Frg 0, TTL 1

+e, Prtl 6

 Cksum 0665, Src c6732cce, Dst c6732c0b

TCP from 198.115.44.206.4269 to 198.115.44.11.12345

 seq 8d3361af, ack 5e15e402, window 2ccc, 0. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum 2b67, Urg-> 0000

No tcp data.

The STCP keep-alive function works quite a bit differently from the OS_TCP function. First off instead of having a 2 hour timer for the initial probe, its 2 minutes. Second, instead of declaring the connection dead after 9 unanswered probes it takes 80, each 2 minutes apart. This can consume a significant amount of bandwidth, especially over a WAN. Therefore, STCP gives the system administrator the option to suppress keep-alive messages for all sockets on an interface, regardless of the socket option. This is done by setting the no_keepalive on the ifconfig command when the interface is configured.

There are several suggestions to change STCP keep-alive behavior. Stcp-1321 suggests that the keep-alive timer and count be externally configurable while stcp-1322 and 1415 both indicate that the keep-alive timer should start at 2 hours. However, as of VOS 14.3 these suggestions have not been accepted.

The telnet_admin command allows you to set or not set the keep-alive option on any telnet service that you define. The default is to set keep-alive and I suggest that you leave it that way. The FTP daemon sets keep-alive on all its sockets. It does not provide a way to turn it off.

How can you tell if the keep-alive socket option has been set? Well first you need the address of the connection's protocol control block. You can get this with the -PCB_addr argument to the netstat command. For example, lets say I have a connection from 10.1.1.13 and port number 9876 to the local port 10157

netstat -numeric -PCB_addr

Active connections

PCB Proto Recv-Q Send-Q Local Address Foreign Address (state)

c2cefd40 tcp 0 0 10.1.1.140:10157 10.1.1.13:9876 ESTABLISHED

ready 13:51:58

Once you have the PCB address you can use the analyze_system request "dump_onetcb" and look at the opt_flag value.

as: match opt_flag; dump_onetcb c2cefd40

 opt_flag 4

The trick to interpreting the opt_flag value is to realize that it is a bit map. Each flag (and there are a bunch) sets 1 bit. The 3rd bit corresponds to the SO_KEEPALIVE. So convert the opt_flag value to binary and if the 3rd bit is set SO_KEEPALIVE has been set to on. If only the 3rd bit is set then the value of opt_flag is 4 but you can't count on that happening.

As I said above setting the keep-alive option doesn't do any good if the interface does not also have keep-alive turned on so you need to check that. The simplest way is with the ifconfig command.

ifconfig #stcp_k104.m13.10.12

%phx_cac_j#stcp_k104.m13.10.12: <UP, BROADCAST, RUNNING, NOFORWARDBROADCAST, KE

+EPALIVE>

 10.2.3.130 netmask 0xff000000 broadcast 10.255.255.255

If the KEEPALIVE flag is there then keep-alive probes are allowed. If NOKEEPALIVE is there then there will be no keep-alive probes sent regardless of the socket option.

STCP does not keep any system level statistics of the number of keep-alive times-outs, probes sent or the number of connections killed because of failed probes. It does however, keep a counter of the number of failed consecutive probes for each socket. To display the for a given socket do the following:

as: match keep; dump_onetcb c2cefd40

 keepcnt 116

 keeptries 0

The keepcnt is the timer, it starts at 1500 (works out to 2 minutes, don't ask) and counts down to 0. When it hits 0 a probe is sent. The keeptries is a counter for the number of consecutive failed probes. If it hits 80 the connection is terminated and all resources are cleaned up. Note that 1 successful probe will reset keeptries to 0.

Except for the timers and the number of probes a trace of STCP sending keep-alive probes look quite a bit like the OS_TCP connection. There are however, 2 differences. First, the probe is a bit different.

16:30:43.982 Xmit IP Ver/HL 45, ToS 0, Len 29, ID 9946, Flg/Frg 0, TTL 3

+c, Prtl 6

 Cksum ceee, Src 0a01018c, Dst 0a01010d

TCP from 10.1.1.140.10157 to 10.1.1.13.9876

 seq 4d4a7991, ack 48faf9f0, window 2000, 1. data bytes, flags Ack.

 X/Off 05, Flags 10, Cksum e030, Urg-> 0000

 offset 0 . . . 4 . . . 8 . . . C . . . 0...4... 8...C...

 0 41 A

Notice that unlike OS_TCP this probe has a byte of data in it. The data will always be an upper case A. The sequence number still corresponds to the last byte of data previously transmitted so we don't have to worry about this corrupting the data stream. The RFC calls this a garbage data probe. Second, when the 80th probe fails and the connection is cleaned up, no reset packet is sent. The connection is torn down and all system resources freed but nothing is sent to the remote peer.

In summary keep-alive really kills connections that are no longer viable. It does not attempt to keep them alive. This is a good thing; it allows the system to recover resources that may not be recoverable any other way except to shut down the application or the system. I therefore suggest that OS_TCP environments always turn keep-alive on. STCP environments should also turn keep-alive on at both the socket and interface levels. If the probes start to consume to much bandwidth they can be turned off at the interface by setting no_keepalive on the ifconfig command.

